Symmetry Groups of A n Hypergeometric Series ?

نویسنده

  • Yasushi KAJIHARA
چکیده

Structures of symmetries of transformations for Holman–Biedenharn–Louck An hypergeometric series: An terminating balanced 4F3 series and An elliptic 10E9 series are discussed. Namely the description of the invariance groups and the classification all of possible transformations for each types of An hypergeometric series are given. Among them, a “periodic” affine Coxeter group which seems to be new in the literature arises as an invariance group for a class of An 4F3 series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry Groups of Bailey’s Transformations for 10φ9-series

Although most of the symmetry groups or “invariance groups” associated with two term transformations between (basic) hypergeometric series have been studied and identified, this is not the case for the most general transformation formulae in the theory of basic hypergeometric series, namely Bailey’s transformations for 10φ9-series. First, we show that the invariance group for both Bailey’s two ...

متن کامل

Seiberg-Witten Theory of Rank Two Gauge Groups and Hypergeometric Series

In SU(2) Seiberg-Witten theory, it is known that the dual pair of fields are expressed by hypergeometric functions. As for the theory with SU(3) gauge symmetry without matters, it was shown that the dual pairs of fields can be expressed by means of the Appell function of type F4. These expressions are convenient for analyzing analytic properties of fields. We investigate the relation between Se...

متن کامل

Generating Kummer Type Formulas for Hypergeometric Functions

Kummer type formulas are identities of hypergeometric series. A symmetry by the permutations of n-letters yields these formulas. We will present an algorithmic method to derive known and new Kummer type formulas. The algorithm utilizes several algorithms in algebra and geometry for generating Kummer type formulas.

متن کامل

High-Dimensional Random Matrices from the Classical Matrix Groups, and Generalized Hypergeometric Functions of Matrix Argument

Results from the theory of the generalized hypergeometric functions of matrix argument, and the related zonal polynomials, are used to develop a new approach to study the asymptotic distributions of linear functions of uniformly distributed random matrices from the classical compact matrix groups. In particular, we provide a new approach for proving the following result of D’Aristotile, Diaconi...

متن کامل

Galois groups of the basic hypergeometric equations 1 by

In this paper we compute the Galois groups of basic hypergeometric equations. In this paper q is a complex number such that 0 < |q| < 1. 1 Basic hypergeometric series and equations The theory of hypergeometric functions and equations dates back at least as far as Gauss. It has long been and is still an integral part of the mathematical literature. In particular, the Galois theory of (generalize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014